1-2-2 افزودنی به خمیر مثبت… 32
1-2-3 افزودنی الکترولیت… 33
1-3 کاربرد فناوری نانو در باتری سرب- اسید.. 34
1-3-1 فناوری نانو. 35
1-3-2 نانوذرات باریم سولفات (BaSO4). 37
4-1هدف از کار حاضر. 39
2-1 مواد و تجهیزات استفادهشده. 40
2-2 سنتز نانو ذرات باریم سولفات… 41
2-3 روشهای بررسی اثر نانو ذرات باریم سولفات… 42
2-3-1 تکنیکهای آزمایشگاهی و الکتروشیمیایی.. 42
2-3-2 آمادهسازی خمیر برای باتری سرب اسیدی.. 43
2-3-2-1 محاسبات مواد فعال برای باتری استارتی (SLI) 30Ah در ƞPAM = 50% و ƞNAM = 45%… 43
2-3-2-2 محاسبهی محتوای فاز جامد در خمیر. 45
2-3-3 تهیهی باتری جهت بررسی عملکرد آن در حضور نانوذرهی BaSO4 47
2-3-3-1 تهیهی خمیر منفی.. 48
2-4 سیستم مطالعهای افزودنی الکترولیتی.. 53
3-1 سنتز نانوذرات باریم سولفات… 55
3-1-1 بهینه سازی غلظت واکنشدهندهها 59
3-1-2 بهینهسازی دمای واکنش…. 61
3-1-3 بهینهسازی حجم محلول آمادهسازی.. 63
3-1-4 بهینهسازی دور همزدن.. 65
3-2 بررسی اثر نانوذرات باریم سولفات بر رفتار الکتروشیمیایی و عملکرد باتری سرب اسید.. 67
3-2-1 بررسی خواص الکتروشیمی الکترود خمیر کربن/ اکسید سرب در حضور نانوذرات BaSO4 67
3-2-1-1 بهینهسازی مقدار پودر اکسید سرب (PbO) با درجهی اکسیداسیون 80%. 68
3-2-1-2 بهینهسازی غلظت الکترولیت اسیدسولفوریک (H2SO4). 69
3-2-1-3 بهینهسازی مقدار نانوذرهی باریم سولفات در خمیر کربن.. 70
3-2-2 بررسی اثر نانوذرات BaSO4 در بهبود عملکرد باتری سرب اسید.. 73
3-2-2-1 نتایج آنالیز شبکهی مصرفی.. 73
3-2-2-2 نتایج درصد سرب آزاد. 75
3-2-2-1 تست ظرفیت اولیه. 75
3-2-2-2 تست استارت سرد. 77
3-2-2-3 تست شارژ پذیری.. 80
3-3 بررسی تاثیرافزودنیهای الکترولیتی بر عملکرد باتریهای سرب اسید.. 81
3-3-1 تولید و احیاء لایهی اکسیدی در سطح الکترود Pb. 83
3-3-1-1 بررسی مکانیسم اثر سدیم فلورید در ولتامتری چرخهای الکترود سرب… 83
3-3-1-2 بررسی اثر سدیم هگزامتافسفات در ولتامتری چرخهای الکترود سرب: 85
3-3-2 پتانسیل تولید هیدروژن.. 86
3-3-3 پتانسیل تولید اکسیژن.. 88
3-3-4 محل و ارتفاع پیک جریان آندی.. 91
3-3-5 برگشتپذیری.. 92
نتیجهگیری.. 94
مراجع: 95
فهرست شکلها:
شکل1- 1: اجزای تشکیلدهندهی باتری سرب اسیدی. 3
شکل1- 2: شمای واحد بارتن. 5
شکل1- 3: شمای انواع واحد بارتن. الف) آسیاب گلوله ای کونیکال، ب) میل اکسید سرب کلرید. 6
شکل1- 4: ساختار دوگانهی PAM. 9
شکل1- 5: تصویر میکروسکوپ الکترونی پویشی (SEM) برای ساختار سه نوع از ذرات PbO2. 9
شکل1- 6: توزیع ساختار ناهمگن در حجم زیاد ذرات PbO2. 10
شکل1- 7: کریستالهای سرب که در شبکهی اسکلتی به هم وصل شدهاند 11
شکل1- 8: فرایندهای انتقال یون. 12
شکل1- 9: فرایندهای شارژ و دشارژ در باتری سرب اسید. 18
شکل1- 10: فرمول فردونبرگ برای لیگنین. 22
شکل1- 11: تصویری از لایهی PbSO4. 23
شکل1- 12: تغییرات اولیهی پتانسیل در پلاریزاسیونهای سرعتبالای صفحهی منفی 28
شکل1- 13: (آ) تصاویر SEM میکرو ساختاری ذرات باریم سولفات 29
شکل1- 14: تغییر در زمان دشارژ ( ظرفیت). 30
شکل1- 15: اثر حضور BaSO4 در NAM در عملکرد ظرفیت سل در چرخه با سرعت دشارژ 20 ساعت [55]. 31
شکل1- 16: تعداد کل چرخههای HRPSoC انجامشده بهعنوان تابعی از مقدار BaSO4 در NAM [54]. 31
شکل1- 17: شماتیک سنتز مواد در اندازهی نانو. 36
شکل1- 18: ساختار کریستالی پیشبینیشدهی ارترومبیک باریم سولفات [123]. 38
شکل2- 1: شماتیک الکترود استفادهشده برای بررسی اثر نانو ذرات BaSO4 . 42
شکل2- 2: حجم محلول H2SO4 ( 1/4 یا 1/18 g cm-3) نسبتهای متفاوتی از H2SO4/ LO. [2]. 47
شکل2- 3: پلیتهای مثبت و منفی استفادهشده در مونتاژ باتری. 50
شکل2- 4: واحدهای باتری مونتاژ شده. 52
یک مطلب دیگر :
شکل 3- 1: ساختار گلیسرول. 54
شکل 3- 2: لیپوزوم گلیسرولی که یونهای SO4-1 را به سبب پیوند هیدروژنی احاطه کرده است. 55
شکل 3- 3: مکانیسم تشکیل نانوذرات BaSO4. 56
شکل 3- 4: مکانیسم ممانعت فضایی گلیسیرین و کنترل اندازهی نانوذرات BaSO4. 57
شکل 3- 5: تصاویر میکروسکوپ الکترونی پویشی (SEM)، برای بهینهسازی غلظت واکنشدهندهها. 59
شکل 3- 6: تصاویر میکروسکوپ الکترونی (SEM) مربوط به بهینهسازی دمای واکنش. 61
شکل 3- 7: تصاویر میکروسکوپ الکترونی پویشی (SEM) ب برای بهینهسازی حجم محلول آمادهسازی. 63
شکل 3- 8: تصاویر میکروسکوپ الکترونی پویشی (SEM)، در بهینه سازی دور همزن مغناطیسی. 65
شکل 3- 9: نتیجهی XRD نمونهی باریم سولفات سولفات. 65
شکل 3- 10: ولتاموگرامهای ولتامتری چرخهای الکترود خمیر کربن برای بهینهسازی پودر اکسید سرب. 68
شکل 3- 11: ولتاموگرام ولتامتری چرخهای برای بهینهسازی غلظت الکترولیت.. 69
شکل 3- 12: نمودارهای ولتامتری چرخهای برای بهینهسازی مقدار نانوذرهی باریم سولفات BaSO4. 71
شکل 3- 13: نمودار کالیبراسیون مقدار نانوذرهی BaSO4. 71
شکل 3- 14: ولتاموگرام چرخهای مقایسهای BaSO4 معمولی با نانوذرات BaSO. 72
شکل 3- 15: نمودار ولتاژ بر حسب زمان بهمنظور شبیهسازی استارت ماشین ثبتشده است. 76
شکل 3- 16: نمودار ولتاژ نسبت به زمان. برای تعیین t6v. 78
شکل 3- 18: ولتاموگرام چرخهای در محلول الکترولیت در حضور و عدم حضور افزودنی الکترولیت. 83
شکل 3- 21: پتانسیل احیا هیدروژن در غلظتهای متفاوتی از افزودنی الکترولیت.. 87
شکل 3- 25: ارتفاع پیک جریان اکسیداسیون Pb در حضور افزودنیهای الکترولیتی پیشنهادی با غلظتهای متفاوت……..90
شکل 3- 26: محل پیک اکسیداسیون Pb به PbSO4 در حضور افزودنی الکترولیتی پیشنهادی در غلظتهای متفاوت………92
شکل 3- 27: نمودار اختلافپتانسیل (برگشتپذیری) بر اساس غلظت افزودنی الکترولیتی پیشنهادی……………………………..93
فهرست جدولها:
جدول1- 1: چگالی ویژه نسبیی اسیدسولفوریک و شرایط شارژ در باتری سرب اسید. 13
جدول1- 2: انواع مختلف کربن استفادهشده در ترکیب اکسپنذرها. 25
جدول1- 3: خصوصیات ساختاری PbSO4، BaSO4، SrSO4. 27
جدول1- 4: روشهای متنوعی برای سنتز مواد در اندازهی نانو. 37
جدول2- 1: لیست مواد استفادهشده. 40
جدول2- 2: لیست تجهیزات استفادهشده. 41
جدول2- 3: وزن مولکولی و حجم مولی مواد فعال لازم برای محاسبات [4]. 46
جدول2- 4: درصد وزنی مواد تشکیلدهندهی خمیر منفی. 48
جدول2- 5: برنامه شارژ باتری استارتی نوع A و B.. 53
جدول2- 6: لیست افزودنی الکترولیت محلول H2SO4 و مشخصات کلی آنها. 54
جدول3- 1: مشخصات محلولهای استفادهشده برای بهینه سازی غلظت واکنش دهنده ها. 59
جدول3- 2: شرایط آزمایشی برای بهینه سازی دمای واکنش. 61
جدول3- 3: شرایط واکنش شیمیایی برای بهینهسازی حجم محلول آمادهسازی. 63
جدول3- 4: شرایط واکنش رسوبگیری نانوذرهی BaSO4 برای بهینه سازی دور هم زدن. 65
جدول3- 5: مشخصات الکترودهای خمیر کربن آماده شده برای بهینهسازی مقدار اکسید سرب PbO. 67
جدول3- 6: مشخصات مواد تشکیلدهندهی خمیر کربن برای بهینهسازی مقدار نانوذرهی BaSO4 70
جدول3- 7: آنالیز سرب مصرفی در تولید اسکلت خام شبکه. 74
جدول3- 8: نتایج اندازهگیری سرب آزاد برای پلیتهای منفی. 75
جدول3- 9: نتایج دوبار تست ظرفیت اولیه برای دو نوع باتری. 76
جدول3- 10: نتایج استارت سرد. 79
جدول3- 11: نتایج تست شارژپذیری. 80
باتری سرب اسید اولین باتری قابل شارژ موفق ازنظر تجاری بود و تاکنون پیشرفتهای روزافزونی داشته است [1]. در سال 1859، فیزیکدان فرانسوی گوستون پلنت[1] پلاریزاسیون بین دو الکترود مشخص غوطهور در محلولهای آبی رقیق از اسید سولفوریک را مطالعه کرد. او الکترودهای مختلف شامل؛ نقره، سرب، قلع، طلا، پلاتنیوم و آلومینیوم را موردبررسی قرارداد و دریافت که بر اساس نوع الکترود استفادهشده، وقتی جریان الکتریکی از درون الکترودها عبور میکند، سلها به اندازههای متفاوتی پلاریزه شده و تولیدکنندهی جریان معکوس میشوند. وی نتایج تمامی مشاهدات خود را در مقالهای تحت عنوان “تحقیقات درزمینهی قطبش ولتایی[2]” در سال 1859 در کومپتس رندوس[3] از دانشکدهی علوم فرانسه چاپ کرد [2].
یک باتری سرب اسید بزرگ (12V)، از 6 سِل که بهصورت سری به هم متصل شدهاند تشکیلشده است که هرکدام حدود 2 ولت پتانسیل ایجاد میکنند. هر سِل شامل دو نوع شبکهی سربی است که با مصالح سربی پوشانیده شده است. آند سرب اسفنجی Pb و کاتد PbO2 پودری است. شبکهها در محلول الکترولیت 4-5 مولار اسید سولفوریک غوطهور هستند و صفحههای فیبر شیشهای[4] بین الکترودها قرار داده میشود تا از اتصال فیزیکی بین صفحات و ایجاد اتصال بین آنها جلوگیری شود. زمانی که سِل دشارژ میشود، بهعنوان یک سِل ولتایی انرژی الکتریکی را به کمک واکنش زیر ایجاد میکند:
آند (اکسیداسیون):
Pb(s) + SO42-(aq) → PbSO4(s) + 2e– (1-1)
کاتد (احیا):
فصل سوم
دوپایایی در سیستم اتمی دو ترازی ………………………………………………………………………………………………………………………35
ابزار نوری و شرایط ورزی………………………………………………………………………………………………………………………………………..43
فصل چهارم
دوپایایی در سیستم اتمی سه ترازی ……………………………………………………………………………………………………………….. 50
سیستم اتمی سه ترازی آبشاری………………………………………………………………………………………………………………………….50
سیستم اتمی – شکل……………………………………………………………………………………………………………………………………….56
اثر پدیده دوپلر بر روی دوپایایی اتمهای – شکل ………………………………………………………………………………………….61
تغییر معادلات لیوویل در سیستم اتمی سهترازی – شکل……………………………………………………………………………..65
کنترل دوپایایی در سیستم اتمی – شکل……………………………………………………………………………………………………….66
فصل پنجم
دوپایایی در سیستم اتمی پنج ترازی ………………………………………………………………………………………………………………. 72
سیستم اتمی کوبراک- رایس……………………………………………………………………………………………………………………………..72
کنترل دوپایایی نوری در سیستم اتمی – شکل……………………………………………………………………………………………80
نقش تغییر فاز در دوپایایی سیستم اتمی – شکل…………………………………………………………………………………………87
نتیجه گیری……………………………………………………………………………………………………………………………………………………….89
مراجع…………………………………………………………………………………………………………………………………………………………………91
چکیده
در بعضی از سیستمهای اپتیکی غیر خطی اگر نور لیزر با شدت بالایی اعمال شود، به ازای یک شدت ورودی، سیستم دارای دو شدت خروجی خواهد بود. جمله دوپایداری نوری بخاطر این خاصیت از سیستم برای این پدیده استفاده می شود. سیستم هایی با چند پایایی نوری نیز وجود دارند که در این سیستم ها به ازاء یک شدت ورودی معین چندین شدت خروجی میتواند وجود داشته باشد. در این پایان نامه هدف بررسی چندپایایی نوری است، اما بخاطر اهمیت و کاربرد فراوان دوپایداری نوری در سوئیچ زنی به این موضوع نیز پرداخته میشود.
در این تحقیق رفتار دوپایایی نوری یک سیستم پنج ترازی М- شکل در حضور میدان های همدوس لیزری بررسی شده است. نشان داده شده که آستانه دوپایایی به شدت میدان های اعمالی بر سیستم وابسته است، همچنین با تغییر در شدت میدانها ی جفت کننده چند پایایی را نیز میتوان مشاهده کرد. در آخر، منحنیهای جذب و پاشندگی با تغییر در شدت میدانها ی جفت کننده بررسی شده است. و به بررسی اثر فاز میدانهای کنترلی بر روی دوپایایی پرداخته شده است.
مقدمه
در سالهای اخیر، تعداد زیادی از پدیده های اپتیک کوانتومی برپایه همدوسی و تداخل کوانتومی، مورد توجه محققان این رشته بوده است.[1] از جمله آنها میتوان به لیزرزایی بدون وارونی جمعیت، شفافیت القایی الکترومغناطیسی، حذف جذب، دوپایایی نوری و غیر خطیت کر اشاره کرد.[2-4] یکی از این پدیده ها دوپایایی نوری در اتم های چند ترازی است که درون یک کاواک قرار داده شده است. دوپایایی نوری به علت کاربردهای گسترده آن، مثل کاربرد آن در ترانزیستورهای نوری، المان های حافظه سیستم و سوئیچ های تمام نوری مورد مطالعه قرار گرفته است.[5-7]
در این پایان نامه ابتدا به تعریف پدیده دوپایایی نوری با استفاده از روابط شدتها پرداخته میشود. و سعی میشود به یک دید کلی از دوپایداری نوری برسیم. البته برای بررسی این پدیده در سیستمهای اتمی مختلف به روابطی از مکانیک کوانتومی و اپتیک غیر خطی نیاز خواهیم داشت که به بررسی اجمالی این روابط در فصل دوم نیز پرداخته میشود. مزیت دیگر این فصل آن است که دارای یک پیوستگی بین روابط کوانتومی که از قبل با آنها آشنا هستیم و روابط اپتیک غیر خطی خواهد بود.
سپس به بررسی روابط اپتیک غیر خطی که در پدیده دوپایایی کاربرد دارند پرداخته میشود وسپس رفتار دوپایایی نوری سیستمهای اتمی مختلف مورد بررسی قرار میگیرد. ابتدا در فصل سوم از یک سیستم دوترازی استفاده میشود. در سیستم دو ترازی با محدودیتهای از قبیل اختلاف فاز محدود برای ایجاد دوپایایی، روبرو هستیم. و سپس در فصل سوم سیستم سه ترازی مطالعه میشود که با استفاده از کنترل فاز بین دو میدان کاوشگر و کنترلی، در حضور اثر تداخل کوانتومی، میتوان سیستم را از حالت دوپایا به حالت چندپایا برد.
در فصل چهارم دوپایایی نوری در سیستمهای اتمی سه ترازی درون مشددهای نوری بطور تئوریکی مطالعه شده است .یکی از فواید بکارگیری سیستم اتمی سه ترازی بجای دوترازی این است که اتم ها بصورت یک محیط غیرخطی در یک مشدد نوری، بکارگیری همدوسی اتمی ایجاد شده در سیستم اتمی سه ترازی را که جذب، پاشندگی و غیرخطیت سیستم را به شدت تحت تاثیر قرار می دهد ممکن می سازد و بخوبی معلوم شده است که همدوسی ناشی از گسیل خودبخودی می تواند با گسیل یک تراز تحریکی به دو تراز اتمی نزدیک به هم یا دو تراز نزدیک به هم به یک تراز تحریکی ایجاد شود. این همدوسی در یک سیستم اتمی نوع آبشاری میتواند در مورد ترازهای اتمی تقریباً هم فاصله اتفاق بیافتد. ترازهای نزدیک تبهگن، یک جمله همدوسی ناشی از اندرکنش با خلاء میدان تابشی دارند.
در فصل پنج رفتار دوپایایی نوری را در سیستمهای اتمی پنج ترازی در حضور میدان های همدوس لیزری بررسی می کنیم. سیستم پنج تراز ی که تا کنون دوپایایی آن بررسی شده است سیستم کوبراک- رایس[1] است. علاوه بر آن در این فصل پدیده دو پایایی نوری در یک سیستم اتمی پنج ترازی – شکل با سه میدان جفت کننده و یک میدان کاوشگر را در یک کاواک حلقوی یکسویه بررسی میکنیم سیستم اتمی پنج ترازی شکل بیشتر از جنبههای نشر خودبخودی ترازها و فوتو آشکار ساز با طول موج پایین مورد توجه بوده است. نشان می دهیم که آستانه دوپایایی به شدت میدان های اعمالی بر سیستم وابسته است، همچنین با تغییر در شدت میدانها ی جفت کننده به چند پایایی نیز میرسیم.
با توجه به تشابه بسیاری از روابط و نتایج رفتار دوپایایی نوری در سیستم چهار ترازی و سایر سیستم های اتمی بررسی شده، بخاطر اختصار و جلوگیری از تکرار، از نوشتن بخشی با عنوان رفتار دوپایایی سیستمهای چهارترازی خودداری کردهایم. اما بخاطر جدید بودن و مطالعه سیستم های پنجترازی در ماههای اخیر، این سیستمها نیز بررسی شده است.
یک مطلب دیگر :
در بررسی دوپایایی نوری در انواع سیستم های نوری، در مورد جذب و پاشندگی اتمها بحث خواهد شد و منحنیهای جذب و پاشندگی را با تغییر در شدت میدانهای جفت کننده بررسی میشود
مقدمه
این فصل را به مفاهیمی از مکانیک کوانتومی اختصاص می دهیم که در محاسبات مورد نیاز هستند. هدف از این کار آشنایی با مسیری مشخص برای مطالعه پدیده دوپایایی نوری است، نه مطالعه قوانین کوانتومی، لذا در بعضی موارد به ذکر مختصری از قوانین مکانیک کوانتومی اکتفا میشود. سعی میشود آنجایی که نقش مهمی در محاسبات بعدی را دارد، بیشتر توضیح داده میشود.
1-1 اختلال
یکی از قوانین اسا سی مکانیک کوانتومی اینست که می توان تمام ویژگیهای یک سیستم اتمی را بر اساس تابع موج اتمی توصیف کرد که از معادله شرودینگر بصورت زیر بدست میآیند:
(1-1)
ویژه حالتهای یک سیستم اتمی و همچنین ویژه مقادیر یک سیستم اتمی را می توان از معادله شرودینگر بدست آورد.
عملگر هامیلتونی است که برای یک سیستم اتمی دارای برهمکنش، شامل دو جمله خواهدبود.
(1-2)
هامیلتونی اتم آزاد و هامیلتونی برهمکنش اتم است. پارامتر اختلال نامیده می شود که بیانگر شدت اختلال است و عددی بین صفر تا یک را دارد. برای یک بر همکنش کامل در نظر گرفته می شود.
درصورتی که اتم بدون برهمکنش در نظرگرفته شود، جوابهای معادله شرودینگر بصورت زیر هستند:
(1-3)
که شامل دو قسمت زمانی و فضایی است. قسمت فضایی در معادله ویژه مقداری زیر که معادله مستقل از زمان شرودینگر نامیده می شود، صدق می کند
(1-4)
و ویژه مقادیر معین انرژی اتم هستند.
جوابهای قسمت فضایی یک مجموعه متعامد کاملی را تشکیل می دهند و شرط تعامد زیر را ارضاء میکنند
(1-5)
برای یک اتم در برهمکنش با میدان الکتریکی، هامیلتونی برهمکنشی بصورت زیر می باشد:
(1-6)
که گشتاور دوقطبی اتم است و بصورت زیر تعریف میشود:
(1-7)
جوابهای معادله شرودینگر با در نظر گرفتن اختلال بصورت زیر است:
(1-8)
قسمتی از جواب معادله شرودینگر است که در انرژی بر همکنش از مرتبه ام است.
برای بدست آوردن مرتبه های مختلف جواب معادله شرودینگر معادله ( 1- 8) را در معادله ( 1- 1) قرار می دهیم و تمام جملات متناسب با توان یکسان از را مساوی هم قرار می دهیم، برای ی با توان صفر داریم:
(1-9)
که جواب معادله شرودینگر برای اتم بدون برهمکنش است. برای سایر مرتبه های اختلال، یک جواب کلی به صورت زیر بدست می آید:
(1-10)
فرض می کنیم جواب معادله شرودینگر در غیاب جمله برهمکنشی بصورت زیر است:
(1-11)
که در اینجا و ویژه مقدار انرژی و ویژه تابع فضایی اتم در حالت پایه می باشند. با توجه به اینکه ویژه توابع انرژی اتم بدون برهمکنش مجموعه کامل و متعامدی را تشکیل می دهند و می توان هرتابعی را بر حسب آنها بسط داد، تابع موج مرتبه ام از برهم کنش را به وسیله آنها میتوان بصورت زیر بسط داد.
(1-12)
که ضریب ، دامنه احتمال آن است که اتم در مرتبه ام اختلال، در لحظه و در ویژه حالت باشد.
با قرار دادن معادله ( 1- 12) در معادله ( 1- 10) ، دستگاه معادلاتی بر حسب دامنه های احتمال بدست می آید:
(1-13)
این معادله دامنه های احتمال مرتبه ام را به دامنه های احتمال مرتبه ام مرتبط می سازد.
با ضرب دوطرف معادله( 1-13) در و انتگرال روی تمام فضا و با استفاده از شرط تعامد توابع پایه معادلات زیر بدست میآیند:
(1-14)
که در آن و به شکل زیر تعریف میشود:
(1-15)
که در واقع عناصر ماتریسی هامیلتونی اختلال هستند.
برای مشخص کردن دامنه های مرتبه اول فرض می کنیم سیستم اتمی در مرتبه صفرم ( بدون اختلال) در حالت پایه، باشد، در نتیجه می باشد.
با استفاده از معادلات (1- 3) و ( 1- 15) عناصر ماتریسی هامیلتونی اختلال را بصورت زیر میتوان نوشت:
(1-16)
که در آن عبارت به شکل زیر نوشته میشود:
(1-17)
و گشتاور دو قطبی گذار نامیده می شود.
حال با جایگذاری روابط اخیر در معادله (1- 14)، دامنه احتمال با استفاده از انتگرال گیری بدست میآید، با فرض اینکه حد پایین انتگرال صفر است.
(1-18- الف)
(1-18- ب)
دوباره از معادله (1- 14) استفاده می کنیم و با استفاده از دامنه احتمال مرتبه اول، دامنه احتمال مرتبه دوم به دست میآید:
1-17-2. رویکردهای تک بعدی سنجش عملکرد. 23
1-1-17-2. حسابداری منابع انسانی. 24
2-1-17-2.. ارزش افزوده اقتصادی.. 24
3-1-17-2.. مدل هزینه یابی بر مبنای فعالیت.. 24
4-1-17-2. سرمایه فکری.. 25
2-17-2. رویکردهای چند بعدی سنجش عملکرد. 25
1-2-17-2. رویکرد ذینفع. 25
2-2-17-2. کارت امتیازی متوازن. 26
شکل شماره 1 ـ 2 رابطه بین جنبه های کارت امتیازی متوازن (زنجیردار و همکاران،1389). 27
18-2 . روش ارزیابی متوازن به عنوان یک سیستم مدیریت استراتژیک.. 27
19-2.الگوی کارت امتیازی متوازن. 29
20-2.عناصر کلیدی کارت امتیازی متوازن. 29
21-2.وجوه کارت امتیازی متوازن. 30
1-21-2. وجه مالی. 30
2-21-2. وجه مشتری.. 31
3-21-2. وجه رشد و یادگیری.. 31
4-21-2. وجه فرایندهای داخلی. 31
شکل 2-2. تبدیل استراتژی سازمان به چهار وجه کارت امتیازی متوازن. 32
22-2. مزایا و کاربردهای کارت امتیازی متوازن. 32
23-2. محدویت های کارت امتیازی متوازن. 33
24-2. گام های پیاده سازی کارت امتیازی متوازن. 34
25-2. استراتژی و کارت امتیازی متوازن. 35
1-25-2. تفسیر چشم انداز 35
2-25-2. ارتباط و مرتبط سازی.. 35
3-25-2. برنامه ریزی تجاری.. 36
4-25-2. بازخورد و یادگیری.. 36
26-2.ارزیابی متوازن در بخش های عمومی و دولتی. 37
27-2. معرفی روش تحلیل سلسله مراتبی (AHP) 38
1-27-2. روش تحلیل سلسله مراتبی AHP. 38
2-27-2. فرآیند تصمیم گیری سلسله مراتبی گروهی. 39
3-27-2. ویژگی های روش تحلیل سلسله مراتبی AHP. 41
28-2.واکاوی ادبیات پژوهش… 41
1-28-2.واکاوی ادبیات پژوهش در جهان. 41
جدول شماره3-2 .خلاصه تحقیق های انجام شده درجهان. 47
2-28-2.واکاوی ادبیات پژوهش در ایران. 48
29-2.چارچوب و مدل پژوهش… 51
شکل5-2 :مدل پزوهش (کاپلان و نورتون ،2000) 51
30-2 .تاریخچه شرکت های تولید کننده اکسل سایپا 51
31-2 .تاریخچه شرکت های تولید کننده بهران محور سایپا 52
فصل سوم. 53
روش شناسی تحقیق. 53
1-3 مقدمه. 54
2-3 روش تحقیق. 55
3-3 مدل تحقیق و شیوه اندازه گیری متغیر ها 56
شکل 1-3 مدل مفهومی تحقیق برگرفته از مدل BSC (کاپلان ونورتون 1992) 56
جدول 1-3 فهرستی از شاخصه ها و استرا تژی های شرکت مورد بررسی با رویکرد مدل BSC. 57
4-3روش تجزیه و تحلیل دادهها 58
5-3 جامعه و نمونه آماری.. 58
6-3 روش نمونه گیری.. 61
6-3 روش جمع آوری اطلاعات وابزار گردآوری.. 61
7-3 مقیاس و طیف ابزار اندازهگیری.. 62
جدول 2-3 امتیازبندی مقیاس تحقیق. 63
8-3روایی یا اعتبار پرسشنامه. 63
9-3پایایی. 63
جدول 3-3 شاخص تصادفی (مهرگان،1383،ص173) 65
شکل1-3 ضریب پایایی پرسشنامه دوم برای نمونه آماری شرکت محورسازان کوشا 67
شکل2-3 ضریب پایایی پرسشنامه دوم برای نمونه آماری شرکت گاما خودرو 67
شکل3-3 ضریب پایایی پرسشنامه دوم برای نمونه آماری شرکت بهران محور 67
شکل4-3 ضریب پایایی پرسشنامه سوم. 67
فصل چهارم 68
تجزیه و تحلیل دادهها 68
1-4 مقدمه. 69
2-4 تعیین وزن معیارها و زیر معیارها با استفاده از روش AHP. 70
شکل 1-4 نمایش سلسله مراتب یک مسئله تحقیق.. 71
جدول 1-4 ارزش گذاری شاخصها نسبت به هم. 72
1-2-4 تعیین وزن مناظر مدل BSC با استفاده از نرم افزار EXPERT CHOICE. 73
شکل 2-4 خروجی نرم افزار وزن دهی مناظر رویکرد BSC. 73
2-2-4 تعیین وزن زیر شاخصه های مناظر مدل BSC با استفاده از نرم افزار EXPERT CHOICE. 74
1-2-2-4 وزن شاخصه های منظر مالی. 74
شکل 3-4 خروجی نرم افزار وزن دهی شاخصه های مالی. 74
2-2-2-4 وزن شاخصه های منظر فرآیندهای داخلی. 75
شکل 4-4 خروجی نرم افزار وزن دهی شاخصه های فرآیندهای داخلی. 75
3-2-2-4 وزن شاخصه های منظر مشتری.. 76
شکل 5-4 خروجی نرم افزار وزن دهی شاخصه های مشتری.. 76
یک مطلب دیگر :
3-6جهان های تورمی 53
3-7 مراحل اولیه ی عالم 55
فصل چهارم
بحث و نتیجه گیری و مشاهدات 58
4-1 بحث و بررسی نتایج مراحل پنجگانه ی فصل سوم 59
4-2 اثرات تغییرات ثابت ساختار ریز بر پایداری مولکول ها ،اتمها و هسته ها 62
4-3 نتایج مشاهدات تلسکوپ VLT برای تغییرات ثابت ساختار ریز 65
4-4حدود تغییرات ثابت ساختار ریز با پتانسیل گرانشی در طیف کوتوله های سفید 67
پیوست الف 71
محاسبه ی ضرایب کریستوفل: 71
پیوست ب 77
جدول تغییرات α 74
مراجع و ماخذ 75
شکل2-1دسته بندی معادلات فریدمن…………………………………………………………………………………………….26
شکل 3-1نمودار تحول عددی درعصرغبار…………………………………………………………………………………42
شکل3-2نمودار تحول عددی در عصر تابش………………………………………………………………………………48
شکل3-3 نمودار تحول عددی در عصر درخمیدگی………………………………………………………………..51
شکل3-4 نمودار تحول عددی در عصر ثابت کیهانشناشی………………………………………………………52
شکل4-1 نمودار تحول عددی بر جسب زمان کیهانی در عصر غبار………………………………………..64
شکل2-4 نمودار بر حسب ………………………………………………………………………………………..70
جدول تغییرات α…………………………………………………………………………………………………………………………..74
فهرست پیوستها
پیوست الف: محاسبه ی ضرایب کریستوفل……………………………………………………………………………….70
پیوست ب: جدول تغییرات α…………………………………………………………………………………………………….74
ثابت های فیزیکی مفاهیم ناشناخته ای برای ما نیستند. در هنگام مطالعه ی قانون های طبیعت ما به اعداد ثابت و بدون یکایی که با این قوانین در ارتباط هستند بر می
یک مطلب دیگر :
خوریم. یکی از سوالات مهم که در حوزه ی فیزیک نظری حائز اهمیت می باشد این است که آیا ثابت های بنیادی در مراحل تحول عالم ثابت هستند یا این که در طول تحول عالم تغییر یافته اند. نظریه های مختلفی مانند نظریه ابر ریسمان هستند که این تغییرات را پیش بینی می کنند. بنابراین اراِئه ی مدل هایی که این تغییرات را بررسی می کنند در حوزه ی فیزیک نظری حائز اهمیت می باشند. یکی از مسائلی که کیهانشناسان در تلاش های خود برای بررسی نتایج نجومی تغییرات زمانی ثابت ساختار ریز با آن مواجه شده اند عدم وجود یک نظریه دقیق بوده است که مدل های کیهانشناسی در حضور تغییر ثابت ساختار ریز را توضیح دهد. تا همین اواخر امکان تجزیه و تحلیل رفتار تغییر α کیهانی در روشی که بتواند جهان را همانند تغییر ثابت گرانشی در نظریه برنز- دیک یا بیشتر نظریه های تانسوری- نرده ای در گرانش توضیح دهد وجود نداشته است.
مشاهدات اخیر انگیزه ای برای تدوین و بررسی جزئیات تغییر ثابت ساختار ریز کیهانی را ایجاد کرده است. مشاهدات چندگانه ای که در نقاط مختلف زمین روی انتقال به سرخ کوازارها انجام شده است. در این مشاهدات برای اولین بار شواهدی ارائه داده است که نشان می دهد ثابت ساختار ریز ممکن است با زمان کیهانی تغییر کند.
در سال 1999 شواهدی از طیف جذبی کوازارها بدست آمد. که نشان می داد ثابت ساختار ریز ممکن است در گذشته مقدار کمتری داشته باشد.
البته این ایده که ثابت ساختار ریز با زمان کیهانی تغییر می کند اولین بار درسال 1948 مطرح شد . جورج گاموف همانند دیراک که نشان داد ثابت گرانشی با زمان کیهانی رابطه ی عکس دارد و پیشنهاد کرد که تغییر ثابت ساختار ریز با زمان کیهانی به صورت است.
در این نوشتار بار الکتریکی را با یک میدان نرده ای بدون جرم را در نظر می گیریم سپس چگونگی تغییر این میدان نرده ای را در دوره های غبار، تابش،خمیدگی، ثابت کیهانشناسی مورد بحث و بررسی عددی قرار می دهیم. در فصل اول مقدمه ای بر کار هایی که در زمینه ی تغییرات ثابت های مختلف فیزیکی شده است آورده ایم. در فصل دوّم مروری داریم بر نسبیت عام و کیهانشناسی استاندارد، در فصل سوم با توجه به مدل گرانشی ارائه شده معادلات کیهانشناسی مدل را بدست آورده و به بحث و بررسی این معادلات در دوره های مختلف کیهانشناسی پرداخته ایم. در فصل چهارم به بررسی نتایج بدست آمده از مدل و مشاهدات صورت گرفته پرداخته ایم.
فیزیک پر از یکاهای مختلف وکمیت های با اندازه های متفاوت است. که بطور تجربی تعیین شده اند بعضی از ثابت ها مانند ثابت گرانشی ( G) بار الکترون (e) و غیره در شکل گیری قوانین فیزیک اهمیت خاصی دارند. اندازه ی این اعداد به یکای مورد استفاده بستگی دارد. بدیهی است که خود این اعداد اهمیت خاصی را بیان نمی کنند. اما ترکیب بعضی از این ثابت های فیزیکی یکا ندارند و اهمیت ویژه ای در فیزیک دارند. مانند ترکیب بار الکترون، سرعت نور در خلا و ثابت پلانک که به صورت زیر نوشته می شود :
در این رابطه ثابت پلانک، cسرعت نور در خلا وe بار الکتریکی الکترون است. این کمیت در تمام یکاهای فیزیکی مقدار یکسانی دارد، پس بایستی دارای اهمیت ویژه ای باشد. عکس این عدد به ثابت ساختار ریز (α) معروف است. این عدد شدت برهمکنش الکترومغناطیسی نشان می دهد. حال اعداد بدون یکای دیگری را بررسی می کنیم .
نیروی الکتریکی بین الکترون و پروتون، نیروی گرانشی بین الکترون و پروتون است. به ترتیب جرم پروتون، جرم الکترون ثابت گرانشی گذردهی الکتریکی خلا، فاصله ی بین الکترون و پروتون است. این ثابت شدت نسبی نیروهای الکتریکی و گرانشی بین الکترون و پروتون را بیان می کند و همانند ثابت ساختار ریز بیان کننده یکی دیگر از ویژگی های طبیعت است. عدد بدون بعد دیگری را در نظر می گیریم، این عدد نسبت مقیاس طول مربوط به عالم(R) و طول وابسته به الکترون(r) است .
در این رابطه ثابت هابل است. سومین عدد بزرگ که اهمیت ویژه ای در فیزیک ذرات وکیهانشاسی دارد برابر تعداد نوکلئون های موجود در عالم است. اگر چگالی بحرانی باشد تعداد ذرات در کره ای به شعاع برابر است با :
با مقایسه این سه عدد می توانیم بنویسیم:
2-8-4.ضمانت نامه استرداد کسور وجه الضمان. 19
2-8-5.ضمانت نامه حسن انجام خرید. 19
2-8-6.ضمانت نامه گمرکی.. 20
2-8-7.ضمانت نامه تعهد پرداخت… 20
2-8-8.ضمانت نامه های متفرقه. 20
2-9.تشریفات صدور ضمانت نامه. 20
2-10.نظریه علت تعهد در ضمانت نامه بانکی.. 21
2-10-1. نظریه “سند مجرد”. 21
2-10-2. سپرده یا وثیقه دستور دهنده. 22
2-10-3. قرارداد پایه. 22
2-11.پشتوانه صدور ضمانت نامه. 23
2-12.استقلال ضمانت بانکی.. 24
2-12-1. غیر قابل استناد بودن ایرادات… 25
2-12-2. سوء استفاده آشکار. 26
2-13.مشخصات ضمانت نامه. 27
2-14.تمدید ضمانت نامه بانکی.. 27
2-15.جلوگیری از پرداخت ضمانت نامه. 28
2-15-1. دستور منع پرداخت ساده. 29
2-15-2. دستور منع پرداخت از مرجع قضایی.. 30
2-15-3. تأمین خواسته. 31
2-15-4. نقش بانک صادر کننده ضمانت نامه. 34
2-16.آئین نامه صدور ضمانت نامه. 34
2-17.نظام حقوقی ضمانت نامه بانکی.. 36
یک مطلب دیگر :